Silicon Drift Detectors

Gaurav Somani

CeNSE, IISc

February 28, 2021

Outline

Absorption efficiency (η)

- ▶ X-rays absorbed in Si generates e-h pairs
- **Fraction of photons absorbed depend on** α

$$
\eta = (1 - e^{-\alpha x})
$$

 \triangleright Wafer with thickness 1 mm suitable for energy upto 20 keV

Figure 1: Absorption efficiency increasing with wafer thickness

PIN diode

 \blacktriangleright High reverse bias applied to p+ to fully deplete it and generate electric field

$$
V_{depletion} = q \frac{N_D d^2}{2\epsilon_{Si}}
$$

- \triangleright Top and bottom are highly doped to form good ohmic contact
- \blacktriangleright High doping also ensures low diffusion current
- \triangleright Top p+ and n+ implantation depth are kept small to keep dead volume low

 \blacktriangleright At full depletion, capacitance saturates to a minimum value and is given

$$
C = \frac{A\epsilon_{Si}}{W_{detector}}
$$

- \triangleright C is proportional to the area which becomes very high for large area detectors.For $A=50$ mm^2 and $d=1$ mm , $\textsf{C}\approx 50\,\,\textsf{pF}$
- \blacktriangleright Not suitable for low noise detection

Working of SDD

- \blacktriangleright n+ contact can be made small and placed on top
- Remaining space on top can be covered by $p+$ to deplete the bulk

Figure 2: Structure demonstrating sideward depletion.?

Figure 3: Top view of cylindrical SDD

Figure 4: Radial cross-section of cylindrical SDD

Potential gutter

Figure 5: Electron (Negative) Potential in SDD

For high SNR, C and leakage current should be low.

- \triangleright C < 100 fF
- \blacktriangleright Leakage current below 100 nA at room temperature
- \blacktriangleright Low drift time (High radial field)
- Device area = 0.8 cm² ($R = 5$ mm, $d = 1$ mm)

Key Design elements

- \blacktriangleright Anode width: Decides the anode capacitance
- \triangleright Biasing Range: Range of allowed bias to maximise field
- \triangleright Surface potential: Ensure uniform radial drift field

Anode capacitance

d

Figure 6: Structure considered for capacitance simulation

Parallel plate capacitor

$$
C = \epsilon \frac{A}{d} = \epsilon \frac{\pi r^2}{d}
$$

 \blacktriangleright True for $r >> d$

 \blacktriangleright For small r/d , fringing effects become dominant

Parallel plate capacitor

 \triangleright Capacitance increase due to fringing is expressed by $A_{effective}$

$$
C_{real} = \epsilon \frac{A_{effective}}{d}
$$

Parallel plate capacitor

Figure 9: Capacitance is relatively independent of R while d is much smaller than R

 \blacktriangleright For large R/d, fringe field don't cross boundary of larger plate Geometric similarity means $\frac{A_{\text{effective}}}{A_{\text{anode}}} = f\left(\frac{R}{a}\right)$ $rac{r}{d}$

Anode capacitance

 \blacktriangleright

Figure 10: $\frac{A_{\text{effective}}}{A}$ $\frac{A_{\textit{effective}}}{A_{\textit{anode}}}$ varies linearly with d/r

$$
A_{\text{eff}} = A_{\text{anode}}(k_1 \frac{d}{r} + k_2)
$$

where $k_1 = 1.32$ and $k_2 = 0.73$

 \blacktriangleright Anode capacitance about 45 fF for $r = 100 \mu m$, $d = 1$ mm, $R = 5$ mm \blacktriangleright $r = 100 \mu m$ is chosen as anode radius

Material Parameters

- **Substrate**: n-Silicon $\rho = 10kΩ cm$ ($N_D = 5 \times 10^{11}/cm^3$). $V_{dep} \approx 380 V$
- **Doping:** Magnitude of doping of $n+$ and $p+$ regions is $10^{18}/cm^3$
- **Carrier lifetime:** High-lifetime(>1 ms) Si wafer for low generation current. $\tau_n = \tau_p = 1$ ms
- \triangleright Carrier mobility: $\mu_n = 1000 V cm^2/s$, $\mu_p = 500 V cm^2/s$

Biasing schemes

- \blacktriangleright Two possible schemes
- ▶ Voltage divider made by poly-Si resistors on top
- \blacktriangleright Intermediate strips left unbiased

Structure with poly-silicon on top

Figure 11: SDD structure considered for simulation (Left edge represent axis of cylindrical structure $(r=0)$][Poly Resistance = 20 ohm/um]]

Self biased structure

Figure 12: Self-biased SDD structure considered for simulation (there are 25 p+ strips at top and shallow p+ layer at the entrance)

Depletion

- \blacktriangleright High +ve bias to anode, all other electrodes grounded
- \blacktriangleright At full depletion, leakage current saturates to 94 nA

Figure 13: Anode leakage current

 \blacktriangleright Leakage current is due to thermal generation (seen by $\sqrt{\it{V}}$ relation)

Generating drift field

- \blacktriangleright Generate highest drift possible
- \blacktriangleright Maintain depletion from breaking
- \blacktriangleright Punch through breakdown is the limiting factor

Figure 14: Avalanche breakdown voltage (PIN diode)

Punch through breakdown

- \triangleright Consider a vertical section in SDD crossing $p+$ strip at top and p+ layer at bottom
- \triangleright Since whole n- is depleted, both $p+$ -n junctions are reverse biased
- \blacktriangleright This is different from punch-through in p-n-p BJTs where one p-n junction is forward biased

Figure 15: One dimensional section of a p+-n-p structure

Potential profile for $p+n-p$ structure

$$
\nabla.\vec{E} = -\frac{d^2 V}{dx^2} = \frac{qN_D}{\epsilon}
$$

$$
V_{left} \ge V_{right}
$$

$$
\triangleright
$$
 $\frac{qN_D}{\epsilon}$ is the curvature of potential

Figure 16: Potential profile of $p+ -n-p$ structure showing potential barrier for holes (Left end is $x = -W_{left}$ and right end is $x = W_{right}$)

Punch through breakdown

$$
\Delta V = V_{left} - V_{right}
$$
 (1)

$$
W = \frac{\epsilon \Delta V}{\epsilon \Delta V} \cdot W_{\text{tot}} = \frac{W}{\epsilon \Delta V} + \frac{\epsilon \Delta V}{\epsilon \Delta V}
$$
 (2)

$$
W_{left} = \frac{V}{2} - \frac{V}{qN_DW}; W_{right} = \frac{V}{2} + \frac{V}{qN_DW}
$$
 (2)

- \triangleright As \pm ve bias on left end is increased, the barrier moves towards left and starts decreasing in height
- ▶ Punch-through breakdown occurs when barrier reaches other as barrier becomes small enough

$$
\bigg\backslash
$$

Figure 17: Potential profile of p +-n-p structure showing potential barrier for holes (Left end is $x = -W_{left}$ and right end is $x = W_{right}$)

Punch-through breakdown

Figure 18 : Punch through breakdown occuring at about 270 V difference between inner p+ strip and bottom p+ $(V_{dep} \approx 380V)$ $[V_{n+} = 300V, V_{right\text{on}+strip} = -350V, V_{bottom} = 0V$

Figure 19: Holes being injected from inner $p+$ strip breaking down depletion (Voltage difference between top and bottom $p+$ is 300 V)

Revisiting punch-through breakdown analysis

- \blacktriangleright Radial field variation can't be neglected
- \blacktriangleright In one-dimensional analysis, all donor dipoles align vertically
- \triangleright But, all donor dipoles cannot be completely vertical in presence of radial field

Revisiting punch-through breakdown analysis

$$
\nabla.\vec{E} = \frac{1}{r}\frac{\partial(rE_r)}{\partial r} + \frac{\partial E_z}{\partial z} = \frac{E_r}{r} + \frac{\partial E_r}{\partial r} + \frac{\partial E_z}{\partial z}
$$
(3)

Figure 20: Radial field variation

Figure 21: Potential barrier position is more closer to the inner $p+$ than barrier position given by [\(??\)](#page-23-0).Potential barrier position is farther from bottom $p+$ layer than barrier position given by $(??)$ [Barrier position is plotted for structure when breakdown occurs at inner $p+$.

Breakdown voltage decreases for inner $p+$ strip and increase for outer p+ strip

Final bias voltage

▶ Voltage divider on top

$$
V_{anode} = 300 V
$$

$$
V_{cathode} = -400 V
$$

$$
V_{p+} = 250 V
$$

$$
V_{bottom} = 0 V
$$

$$
V_{anode} = 350 V
$$

$$
V_{cathode} = -400 V
$$

$$
V_{bottom} = 0 V
$$

Surface potential

Figure 22: Linear surface potential

Design Evaluation

- \blacktriangleright Radial drift field along
- \blacktriangleright Collection efficiency
- \blacktriangleright Transient behaviour

Drift channel

- \blacktriangleright Channel : A pathway for electrons
- In semiconductors, $\vec{v}||\vec{E}$
- \triangleright Center of charge cloud moves along an electric field line
- \triangleright Drift channel should be an electric field line
- \triangleright Drift path defined by P. Rehak. et. el(1989):

$$
\left(\frac{\partial V}{\partial z}\right)_{z=z(r)}=0
$$

 -10^{21}

Figure 24: High electron density channel

 -133

Drift channel shape

(a) Self-biased surface potential leading to curviest drift channel

(b) Linear surface potential leading to straight drift channel

Figure 25: Drift channel for different surface potentials

Drift time

 \blacktriangleright

$$
t = \int_{r_0}^r \frac{dr}{v_{drift,r}} = \int_{r_0}^r \frac{dr}{\mu_n \ E_{drift,r}} = \frac{r - r_0}{\mu_n \ E_{drift,mean}}
$$

$$
E_{drift,mean} = \frac{r - r_0}{\int_{r_0}^r \frac{dr}{E_{drift,r}}}
$$

- \blacktriangleright Lower electric field regions slow down the carriers and take much of the carrier's drift time
- \blacktriangleright Mean drift field closer to minimum electric field than maximum.
- $\triangleright \implies$ For a given potential difference, optimum drift field should be uniform

Maximum drift field

$$
\left(E_{drift,mean}\right)_{max} = \frac{V_{anode} - V_{bottom}}{R}
$$

Drift field

(b) Self biased surface potential

- \triangleright Straight line potential: Decreasing field (Low resistance poly)
- \triangleright Self biased potential: Increasing field (No poly \triangleright Infinite resistance)
- \triangleright Optimum in between
- \blacktriangleright As channel moves away from n-side (top), effect of surface field diminishes.
- \blacktriangleright To counter it, increasing surface field is required.

Surface potential

Figure 27: Optimum surface potential

Figure 28: Radial drift field along the channel for curved surface potential

Optimum drift field

$$
\phi(r) \propto \left(\sqrt{1 - \frac{r}{R}} - 1\right)
$$

$$
z_{dr}(r) = d\left(1 - \sqrt{1 - \frac{r}{R}}\right)
$$

$$
E_{surface, r} = -\frac{d}{dr}\phi(r) \propto \frac{1}{\sqrt{1 - \frac{r}{R}}}
$$

- \blacktriangleright Results in uniform radial drift field
- \blacktriangleright Diverging electric field at surface

Optimum surface field

Figure 29: Surface electric field leading to curved optimum drift channel

Figure 31: Comparison

Transient pulse

 \blacktriangleright Triangular pulse of width 0.1ns incident at different radial distance

Interpretation using Shockley-Ramo Theorem

$$
Q = -q \; \phi_0(\mathbf{x})
$$

$$
i = -q \; \vec{v} \cdot \vec{E_0}(\mathbf{x})
$$

 \triangleright Weighing potential is a solution of Laplace equation

$$
\nabla^2 \phi = 0
$$

$$
\phi(\text{anode}) = 1, \phi(p + \text{ strips}) = \phi(\text{bottom } p + \text{layer}) = 0
$$

- \triangleright Only depends on geometry of the biased electrodes (Independent of applied bias and space charge)
- As charge moves, it gains kinetic energy by energy stored in electric field
- \blacktriangleright To restore that, power supplies push more energy which leads to induced charge

Interpretation using Shockley-Ramo Theorem

Figure 33: Anode weighing potential at different depths in the detector

Drift time-distance

(a) Linear Potential

(b) Curved Potential

Table 1: Mean drift field comparison

Manufacturability

- ▶ Poly-Si resistors: Resistance for optimum case \approx 49 ohms/um
- For 10 μ m width, $R_{sheet} \approx 490 \Omega/square$
- ► With 250 nm thickness, doping $\approx 10^{19}/cm^3$

Summary

- I Linear relation between $A_{effective}/A_{anode}$ and d/r to determine anode radius
- \blacktriangleright Analysis of punch through accounting radial flux
- \blacktriangleright Drift channel with appropriate definition
- \blacktriangleright Mean drift field and Drift time to evaluate device
- \triangleright Optimum surface potential by optimising resistance of voltage divider
- \triangleright Weighing potential given by S-R theorem to understand induced current on anode
- ▶ SDD of radius 5 mm and depth 1 mm (94 nA, $c \approx 48$ fF and mean drift field of 598 V/cm)

Future Work

- \blacktriangleright Design for lower R/d
- Integrate JFET with SDD
- ▶ Fabricate SDD